Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 591-600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428116

RESUMO

HYPOTHESIS: The key feature of living cells is multicompartmentalization for enzymatic reactions. Artificial cell-like multicompartments with micro domains are appealing to mimic the biological counterparts. In addition, establishing a sustainable, efficient, and controllable reaction system for enzymatic hydrolysis is imperative for the production of natural fatty acids from animal and plant-based fats. EXPERIMENTS: Reverse Janus emulsion microreactors, i.e. (W1 + W2)/O, is constructed through directly using natural fats as continuous phase and aqueous two-phase solutions (ATPS) as inner phases. Enzyme is confined in the compartmented aqueous droplets dominated by the salt of Na2SO4 and polyethylene glycol (PEG). Enzyme catalyzed ester hydrolysis employed as a model reaction is performed under the conditions of agitation-free and mild temperature. Regulation of reaction kinetics is investigated by diverse droplet topology, composition of inner ATPS, and on-demand emulsification. FINDINGS: Excellent enzymatic activity toward hydrolysis of plant and animal oils achieves 88.5 % conversion after 3 h. Compartmented micro domains contribute to condense and organize the enzymes spatially. Timely removal of the products away from reaction sites of oil/water interface "pushed" the reaction forward. Distribution and transfer of enzyme in two aqueous lobes provide extra freedom in the regulation of hydrolysis kinetics, with equilibrium conversion controlled freely from 14.5 % to 88.5 %. Reversible "open" and "shut" of hydrolysis is acheived by on-demand emulsification and spontaneous demulsification. This paper paves the way to advancing progress in compartmentalized emulsion as a sustainable and high-efficiency platform for biocatalytic applications.


Assuntos
Óleos , Cloreto de Sódio , Animais , Hidrólise , Emulsões , Temperatura
2.
Stem Cell Res Ther ; 15(1): 54, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414051

RESUMO

BACKGROUND: Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS: A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS: Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION: Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.


Assuntos
Células Ependimogliais , Retinite Pigmentosa , Animais , Camundongos , Células Ependimogliais/metabolismo , Gliose/metabolismo , Proteína HMGA2/metabolismo , Retina/metabolismo , Retinite Pigmentosa/metabolismo , Modelos Animais de Doenças , RNA/metabolismo , Neuroglia/metabolismo , Mamíferos
3.
Adv Sci (Weinh) ; 11(3): e2303555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009796

RESUMO

A20-binding inhibitor of NF-κB activation (ABIN1) is a polyubiquitin-binding protein that regulates cell death and immune responses. Although Abin1 is located on chromosome 5q in the region commonly deleted in patients with 5q minus syndrome, the most distinct of the myelodysplastic syndromes (MDSs), the precise role of ABIN1 in MDSs remains unknown. In this study, mice with a mutation disrupting the polyubiquitin-binding site (Abin1Q478H/Q478H ) is generated. These mice develop MDS-like diseases characterized by anemia, thrombocytopenia, and megakaryocyte dysplasia. Extramedullary hematopoiesis and bone marrow failure are also observed in Abin1Q478H/Q478H mice. Although Abin1Q478H/Q478H cells are sensitive to RIPK1 kinase-RIPK3-MLKL-dependent necroptosis, only anemia and splenomegaly are alleviated by RIPK3 deficiency but not by MLKL deficiency or the RIPK1 kinase-dead mutation. This indicates that the necroptosis-independent function of RIPK3 is critical for anemia development in Abin1Q478H/Q478H mice. Notably, Abin1Q478H/Q478H mice exhibit higher levels of type I interferon (IFN-I) expression in bone marrow cells compared towild-type mice. Consistently, blocking type I IFN signaling through the co-deletion of Ifnar1 greatly ameliorated anemia, thrombocytopenia, and splenomegaly in Abin1Q478H/Q478H mice. Together, these results demonstrates that ABIN1(Q478) prevents the development of hematopoietic deficiencies by regulating type I IFN expression.


Assuntos
Anemia , Interferon Tipo I , Trombocitopenia , Animais , Humanos , Camundongos , Poliubiquitina , Esplenomegalia
4.
Chemosphere ; 350: 140928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092174

RESUMO

CO2-responsive microemulsion (ME) is considered a promising candidate for deep-cleaning and oil recovery from oil-contaminated soils. Understanding the responsive nature of different microstructures (i.e., oil-in-water (O/W), bicontinuous (B.C.) and water-in-oil (W/O)) is essential for unlocking the potential and mechanisms of CO2-responsive emulsions in complex multiphase systems and providing comprehensive guidance for remediation of oil-contaminated soils. Herein, the responsiveness of microstructures of ME to CO2 trigger was investigated using experimental designs and coarse-grained molecular dynamic simulations. MEs were formed for the first time by a weakly associated pseudo-Gemini surfactant of indigenous organic acids (naphthenic acids, NAs are a class of natural surface-active molecules in crude oil) and tetraethylenepentamine (TEPA) through fine tuning of co-solvent of dodecyl benzene sulfonic acid (DBSA) and butanol. The O/W ME exhibited an optimal CO2-responsive character due to easier proton migration in the continuous aqueous phase and more pronounced dependence of configuration on deprotonated NA ions. Conversely, the ME with W/O microstructure exhibited a weak to none responsive characteristic, most likely attributed to its high viscosity and strong oil-NA interactions. The O/W ME also showed superior cleaning efficiency and oil recovery from oil-contaminated soils. The results from this study provide insights for the design of CO2-responsive MEs with desired performance and guidance for choosing the favorable operating conditions in various industrial applications, such as oily solid waste treatment, enhanced oil recovery (EOR), and pipeline transportation. The insights from this work allow more efficient and tailored design of switchable MEs for manufacturing advanced responsive materials in various industrial sectors and formulation of household products.


Assuntos
Dióxido de Carbono , Óleos , Óleos/química , Tensoativos/química , Emulsões/química , Água/química , Solo
5.
Mar Pollut Bull ; 199: 115918, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134871

RESUMO

Triclosan (TCS) poses an ecological health risk due to its lipophilic nature, long half-life, and bioconcentration. To evaluate the toxicity of TCS on aquatic organisms, the life history parameters, population dynamics, and transcriptome regulation of Brachionus plicatilis exposed to TCS were investigated. In this study, the fecundity of rotifers was promoted by 25 µg/L of TCS and inhibited by higher concentrations (100 µg/L, 200 µg/L). The reproductive period of rotifers was shortened by 46.24 % but the post-reproductive period was prolonged by 176.47 % in 200 µg/L TCS. Both population growth and life table parameters indicated that a high concentration of TCS (200 µg/L) had negative impacts on population growth. Transcriptomic analysis showed that the effects of TCS on the life history parameters and population dynamics of rotifers were determined by regulating the expression of functional genes in cilium organization and cilium assembly and involved in pathways of focal adhesion.


Assuntos
Rotíferos , Triclosan , Poluentes Químicos da Água , Animais , Transcriptoma , Reprodução , Dinâmica Populacional , Poluentes Químicos da Água/metabolismo
6.
iScience ; 26(12): 108565, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144456

RESUMO

Corneal alkali burn remains a clinical challenge in ocular emergency, necessitating the development of effective therapeutic drugs. Here, we observed the arachidonic acid metabolic disorders of corneas induced by alkali burns and aimed to explore the role of Prostaglandin E2 (PGE2), a critical metabolite of arachidonic acid, in the repair of alkali-burned corneas. We found a moderate dosage of PGE2 promoted the alkali-burned corneal epithelial repair, whereas a high dosage of PGE2 exhibited a contrary effect. This divergent effect is attributed to different dosages of PGE2 regulating ANXA1 expression differently. Mechanically, a high dosage of PGE2 induced higher GATA3 expression, followed by enhanced GATA3 binding to the ANXA1 promoter to inhibit ANXA1 expression. In contrast, a moderate dosage of PGE2 increased CREB1 phosphorylation and reduced GATA3 binding to the ANXA1 promoter, promoting ANXA1 expression. We believe PGE2 and its regulatory target ANXA1 could be potential drugs for alkali-burned corneas.

7.
Small ; : e2310234, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155520

RESUMO

The development of chiral nanostructures-based supramolecular catalysts with satisfied enantioselectivity remains a significantly more challenging task. Herein, the synthesis and self-assembly of various amino acid amphiphiles as chiral supramolecular catalysts after metal ion coordination is reported and systematically investigate their enantioselectivity in asymmetric Diels-Alder reactions. In particular, the self-assembly of l/d-phenylglycine-based amphiphiles (l/d-PhgC16 ) and Cu(II) into chiral supramolecular catalysts in the methanol/water solution mixture is described, which features the interesting M/P nanohelices (diameter ≈8 nm) and mostly well-aligned M/P nanoribbons (NRs). The M/P supramolecular catalysts show both high but inverse enantioselectivity (>90% ee) in Diels-Alder reactions, while their monomeric counterparts display nearly racemic products. Analysis of the catalytic results suggests the outstanding enantioselectivities are closely related to the specific stereochemical microenvironment provided by the arrangement of the amphiphiles in the supramolecular assembly. Based on the experimental evidence of chirality transfer from supramolecular nanohelices to coordinated Cu(II) and substrate aza-chalcone and the molecular dynamics simulations, the enantioselective catalytic mechanisms are proposed. Moreover, the relationships between molecular structures of amino acid amphiphiles (the hydrophilic head group and hydrophobic alkyl chain length) in supramolecular catalysts and enantioselectivity in Diels-Alder reactions are elaborated.

8.
Front Pharmacol ; 14: 1197671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034986

RESUMO

Introduction: Randomized, controlled trials of molnupiravir in real-world use during the Omicron wave are scarce. The frequency of hospitalization and death is low, so further research is needed to confirm the virological efficacy of molnupiravir. Methods: A single-center, randomized, controlled clinical trial was conducted, and 111 hospitalized coronavirus disease 2019 (COVID-19) patients were randomly assigned at a ratio of 1:1. Fifty-three patients in the molnupiravir group were administered 800 mg of molnupiravir twice daily for 5 days in addition to the standard therapy, and 58 patients in the control group only received the standard therapy in accordance with local guidelines. The antiviral effect and adverse events were evaluated during the follow-up. Results: The median viral clearance time in the molnupiravir group was significantly shorter than that in the control group (p = 0.003). Furthermore, patients who started molnupiravir therapy within 3 days had significantly shorter viral clearance time than the controls (p = 0.003). In the vaccinated subgroup, molnupiravir therapy was also associated with a shorter viral clearance time (p = 0.003). A total of three adverse events, which were minor, were reported in the molnupiravir group. One of the patients had mild liver function abnormalities, and all of them were resolved without intervention. However, the remission time was similar between the two tested groups. Conclusion: Molnupiravir exhibited good viral replication inhibitor efficacy in patients with Omicron variant vaccine breakthrough COVID-19 infection. Clinical Trial Registration: [https://www.chictr.org.cn/], identifier [ChiCTR2200059796].

9.
Cancer Immunol Immunother ; 72(12): 4415-4429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938367

RESUMO

Dermatofibrosarcoma protuberans (DFSP) stands as a rare and locally aggressive soft tissue tumor, characterized by intricated molecular alterations. The imperative to unravel the complexities of intratumor heterogeneity underscores effective clinical management. Herein, we harnessed single-cell RNA sequencing (scRNA-seq) to conduct a comprehensive analysis encompassing samples from primary sites, satellite foci, and lymph node metastases. Rigorous preprocessing of raw scRNA-seq data ensued, and employing t-distributed stochastic neighbor embedding (tSNE) analysis, we unveiled seven major cell populations and fifteen distinct subpopulations. Malignant cell subpopulations were delineated using infercnv for copy number variation calculations. Functional and metabolic variations of diverse malignant cell populations across samples were deciphered utilizing GSVA and the scMetabolism R packages. Additionally, the exploration of differentiation trajectories within diverse fibroblast subpopulations was orchestrated through pseudotime trajectory analyses employing CytoTRACE and Monocle2, and further bolstered by GO analyses to elucidate the functional disparities across distinct differentiation states. In parallel, we segmented the cellular components of the immune microenvironment and verified the presence of SPP1+ macrophage, which constituted the major constituent in lymph node metastases. Remarkably, the CellChat facilitated a comprehensive intercellular communication analysis. This study culminates in an all-encompassing single-cell transcriptome atlas, propounding novel insights into the multifaceted nature of intratumor heterogeneity and fundamental molecular mechanisms propelling metastatic DFSP.


Assuntos
Dermatofibrossarcoma , Neoplasias Cutâneas , Humanos , Dermatofibrossarcoma/genética , Dermatofibrossarcoma/patologia , Dermatofibrossarcoma/secundário , Metástase Linfática , Variações do Número de Cópias de DNA , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Análise de Sequência de RNA , Microambiente Tumoral/genética
10.
Sci Rep ; 13(1): 16489, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779134

RESUMO

Multiple methods have been proposed for evaluating the symmetry of facial contour by utilizing the median sagittal plane of the skull as a reference and measuring the maxillofacial region. To replace the manual mark point analysis method, we used the anterior cerebral falx plane in MRI images as an indicator of the craniofacial midline. The MRI examination data of 30 individuals were analyzed with a MeVisLab workstation. Two independent examiners performed 15 anthropometric measurements (4 angular, 11 linear) and compared the MRI-based anterior cerebral falx plane with the manual mark point analysis of the craniofacial midline estimation. All measurements were repeated after 3 weeks. Statistical analyses included the repeatability and reproducibility of the 2 methods based on intra-observer and inter-observer correlation coefficients (ICCs), respectively. Precision was estimated by intergroup comparison of the coefficient of variation. The anterior falx plane derived from the MRI data resulted in an intra-observer ICC of 0.869 ± 0.065 (range 0.733-0.936) and inter-observer ICC of 0.876 ± 0.0417 (0.798-0.932) for all measurements, showing significant correlations with the ICC values obtained by the mark point method (p < 0.05). The coefficient of variation showed that the precisions of the 2 methods were statistically comparable. We conclude that, for MRI-based craniofacial midline estimation, measurements made using the anterior cerebral falx plane are as precise, repeatable, and reproducible as those using the manual mark point analysis method. It has a high potential for application in radiation-free 3-dimensional craniofacial analysis.


Assuntos
Imageamento Tridimensional , Crânio , Humanos , Reprodutibilidade dos Testes , Imageamento Tridimensional/métodos , Crânio/diagnóstico por imagem , Face/diagnóstico por imagem , Imageamento por Ressonância Magnética , Variações Dependentes do Observador
11.
Redox Biol ; 67: 102911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816275

RESUMO

Excessive light exposure can damage photoreceptors and lead to blindness. Oxidative stress serves a key role in photo-induced retinal damage. Free radical scavengers have been proven to protect against photo-damaged retinal degeneration. Fullerol, a potent antioxidant, has the potential to protect against ultraviolet-B (UVB)-induced cornea injury by activating the endogenous stem cells. However, its effects on cell fate determination of Müller glia (MG) between gliosis and de-differentiation remain unclear. Therefore, we established a MG lineage-tracing mouse model of light-induced retinal damage to examine the therapeutic effects of fullerol. Fullerol exhibited superior protection against light-induced retinal injury compared to glutathione (GSH) and reduced oxidative stress levels, inhibited gliosis by suppressing the TGF-ß pathway, and enhanced the de-differentiation of MG cells. RNA sequencing revealed that transcription candidate pathways, including Nrf2 and Wnt10a pathways, were involved in fullerol-induced neuroprotection. Fullerol-mediated transcriptional changes were validated by qPCR, Western blotting, and immunostaining using mouse retinas and human-derived Müller cell lines MIO-M1 cells, confirming that fullerol possibly modulated the Nrf2, Wnt10a, and TGF-ß pathways in MG, which suppressed gliosis and promoted the de-differentiation of MG in light-induced retinal degeneration, indicating its potential in treating retinal diseases.


Assuntos
Células Ependimogliais , Degeneração Retiniana , Animais , Camundongos , Humanos , Células Ependimogliais/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Gliose/tratamento farmacológico , Gliose/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Retina/metabolismo , Neuroglia , Fator de Crescimento Transformador beta/metabolismo
12.
Stem Cell Rev Rep ; 19(8): 2790-2806, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603136

RESUMO

Fetal Alcohol Syndrome (FAS) affects a significant proportion, exceeding 90%, of afflicted children, leading to severe ocular aberrations such as microphthalmia and optic nerve hypoplasia. During the early stages of pregnancy, the commencement of neural retina neurogenesis represents a critical period for human eye development, concurrently exposing the developing retinal structures to the highest risk of prenatal ethanol exposure due to a lack of awareness. Despite the paramount importance of this period, the precise influence and underlying mechanisms of short-term ethanol exposure on the developmental process of the human neural retina have remained largely elusive. In this study, we utilize the human embryonic stem cells derived retinal organoids (hROs) to recapitulate the initial retinal neurogenesis and find that 1% (v/v) ethanol slows the growth of hROs by inducing robust cell death and retinal ganglion cell differentiation defect. Bulk RNA-seq analysis and two-photon microscope live calcium imaging reveal altered calcium signaling dynamics derived from ethanol-induced down-regulation of RYR1 and CACNA1S. Moreover, the calcium-binding protein RET, one of the downstream effector genes of the calcium signaling pathway, synergistically integrates ethanol and calcium signals to abort neuron differentiation and cause cell death. To sum up, our study illustrates the effect and molecular mechanism of ethanol on the initial neurogenesis of the human embryonic neural retina, providing a novel interpretation of the ocular phenotype of FAS and potentially informing preventative measures for susceptible populations.


Assuntos
Sinalização do Cálcio , Cálcio , Criança , Feminino , Gravidez , Humanos , Retina , Neurogênese/genética , Diferenciação Celular/genética , Morte Celular , Etanol/farmacologia
13.
Small ; 19(44): e2205998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37407519

RESUMO

Poor therapeutic outcomes of antioxidants in ophthalmologic clinical applications, including glutathione during photoreceptor degeneration in retinitis pigmentosa (RP), are caused by limited anti-oxidative capacity. In this study, fullerenols are synthesized and proven to be highly efficient in vitro radical scavengers. Fullerenol-based intravitreal injections significantly improve the flash electroretinogram and light/dark transition tests performed for 28 days on rd1 mice, reduce the thinning of retinal outer nuclear layers, and preserve the Rhodopsin, Gnat-1, and Arrestin expressions of photoreceptors. RNA-sequencing, RT-qPCR, and Western blotting validate that mitochondrial DNA (mt-DNA)-encoded genes of the electron transport chain (ETC), such as mt-Nd4l, mt-Co1, mt-Cytb, and mt-Atp6, are drastically downregulated in the retinas of rd1 mice, whereas nuclear DNA (n-DNA)-encoded genes, such as Ndufa1 and Atp5g3, are abnormally upregulated. Fullerenols thoroughly reverse the abnormal mt-DNA and n-DNA expression patterns of the ETC and restore mitochondrial function in degenerating photoreceptors. Additionally, fullerenols simultaneously repress Flap endonuclease 1 (FEN1)-mediated mt-DNA cleavage and mt-DNA leakage via voltage-dependent anion channel (VDAC) pores by downregulating the transcription of Fen1 and Vdac1, thereby inactivating the downstream pro-inflammatory cGAS-STING pathway. These findings demonstrate that fullerenols can effectively alleviate photoreceptor degeneration in rd1 mice and serve as a viable treatment for RP.


Assuntos
Degeneração Retiniana , Retinite Pigmentosa , Camundongos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Retinite Pigmentosa/tratamento farmacológico , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Mitocôndrias/metabolismo , Modelos Animais de Doenças
15.
Eur J Med Res ; 28(1): 185, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291616

RESUMO

Nowadays, laser is the mainstay treatment for cafe-au-lait macules (CALMs), but no systematic review has been published to demonstrate the overall efficacy and it's still controversial which type of laser is optimal. Thus, we conduct the meta-analysis to evaluate the effectiveness and side effects of various types of lasers in treating CALMs. Original articles reporting the efficacy and side effects for CALMs in laser treatment were identified in PubMed, EMBASE, and Web of Science from 1983 to April 11, 2023. Using R software and the 'meta' package, meta-analysis was conducted for clearance and recurrence for evaluation of efficacy. And the occurrence of hypopigmentation and hyperpigmentation rate was pooled for safety evaluation. We used RoB2 and ROBINS-I tools to assess the risks of bias in RCT studies and non-RCT studies, respectively. The Grading of Recommendations, Assessment, Development and Evaluation system was used to assess the quality of the evidence. Nineteen studies involving 991 patients were included, which had a very low to moderate quality of evidence. The pooled 75% clearance rate was 43.3% (95% CI 31.8-54.7%, I2 = 96%), 50% clearance rate was 75% (95% CI 62.2-85.9%, I2 = 89%) and the recurrence rate was 13% (95% CI 3.2-26.5%, I2 = 88%). The pooled hypopigmentation and hyperpigmentation rates were 1.2% (95% CI 0.3-2.1%, I2 = 0%) and 1.2% (95% CI 0.3-2%, I2 = 0%), respectively. Subgroup analysis revealed that QS-1064-nm Nd:YAG laser treatment not only achieved more than 75% clearance rate in 50.9% of patients (95% CI 26.9-74.4%, I2 = 90%) but also resulted in the lowest hypopigmentation and hyperpigmentation rate of 0.5% (95% CI 0.0-2.5%, I2 = 26%) and 0.4% (95% CI 0.0-2.5%, I2 = 0%). To draw a conclusion, the laser treatment could reach an overall clearance rate of 50% for 75% of the patients with CALMs, for 43.3% of the patients, the clearance rate could reach 75%. When looking at different wavelength subgroups, QS-1064-nm Nd:YAG laser exhibited the best treatment capability. Laser of all the wavelength subgroups presented acceptable safety regarding of the low occurrence of side effects, namely, hypopigmentation and hyperpigmentation.


Assuntos
Hiperpigmentação , Hipopigmentação , Lasers de Estado Sólido , Humanos , Resultado do Tratamento , Lasers de Estado Sólido/efeitos adversos , Manchas Café com Leite/radioterapia , Manchas Café com Leite/etiologia , Hipopigmentação/etiologia , Hipopigmentação/radioterapia , Hiperpigmentação/etiologia
16.
Shock ; 60(1): 100-109, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141173

RESUMO

ABSTRACT: Background: Protein kinase ataxia telangiectasia mutated (ATM) regulates the function of endothelial cells and responds quickly to endotoxin. However, the function of ATM in lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) disruption remains unknown. This study aimed to investigate the role and underlying mechanism of ATM in the regulation of the BBB function in sepsis. Methods: We used LPS to induce BBB disruption in vivo and to establish an in vitro model of cerebrovascular endothelial cells. Blood-brain barrier disruption was assessed by measuring Evans blue leakage and expression of vascular permeability regulators. To investigate the role of ATM, its inhibitor AZD1390 and clinically approved doxorubicin, an anthracycline that can activate ATM, were administered as scheduled. To explore the underlying mechanism, protein kinase B (AKT) inhibitor MK-2206 was administered to block the AKT/dynamin-related protein 1 (DRP1) pathway. Results: Lipopolysaccharide challenge induced significant BBB disruption, ATM activation, and mitochondrial translocation. Inhibiting ATM with AZD1390 aggravated BBB permeability as well as the following neuroinflammation and neuronal injury, while activation of ATM by doxorubicin abrogated these defects. Further results obtained in brain microvascular endothelial cells showed that ATM inhibition reduced the phosphorylation of DRP1 at serine (S) 637, promoted excessive mitochondrial fission, and resulted in mitochondrial malfunction. By activating ATM, doxorubicin increased the protein binding between ATM and AKT and promoted the phosphorylated activation of AKT at S473, which could directly phosphorylate DRP1 at S637 to repress excessive mitochondrial fission. Consistently, the protective role of ATM was abolished by the AKT inhibitor MK-2206. Conclusions: Ataxia telangiectasia mutated protects against LPS-induced BBB disruption by regulating mitochondrial homeostasis, at least in part, through the AKT/DRP1 pathway.


Assuntos
Ataxia Telangiectasia , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Ataxia Telangiectasia/metabolismo , Células Endoteliais/metabolismo , Fosforilação , Homeostase , Dinaminas , Doxorrubicina/metabolismo , Dinâmica Mitocondrial
17.
Theranostics ; 13(5): 1698-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056562

RESUMO

Rationale: Müller glia (MG) play a key role in maintaining homeostasis of the retinal microenvironment. In zebrafish, MG reprogram into retinal progenitors and repair the injured retina, while this MG regenerative capability is suppressed in mammals. It has been revealed that microglia in zebrafish contribute to MG reprogramming, whereas those in mammals are over-activated during retinal injury or degeneration, causing chronic inflammation, acceleration of photoreceptor apoptosis, and gliosis of MG. Therefore, how to modulate the phenotype of microglia to enhance MG reprogramming rather than gliosis is critical. Methods: PLX3397, a colony-stimulating factor 1 receptor inhibitor, was applied to deplete microglia in the retinas of retinal degeneration 10 (rd10) mice, and withdrawal of PLX3397 was used to induce the repopulated microglia (Rep-MiG). The protective roles of the Rep-MiG on the degenerative retina were assessed using a light/dark transition test, and scotopic electroretinogram recordings. Immunofluorescence, western blot, transcriptomic sequencing, and bioinformatics analysis were performed to investigate the effects and mechanisms of microglia on MG reprogramming. Results: Following PLX3397 withdrawal, Rep-MiG replenished the entire retina with a ramified morphology and significantly improved the retinal outer nuclear layer structure, the electroretinography response, and the visual behavior of rd10 mice. Coincidentally, MG were activated, de-differentiated, and showed properties of retina progenitors in a spatial correlation with Rep-MiG. Morphological and transcriptomic analyses revealed Rep-MiG significantly enhanced protease inhibitor activity and suppressed extracellular matrix (ECM) levels during retinal degeneration. Conclusions: It suggested that Rep-MiG with the homeostasis characteristic stimulated the progenitor cell-like properties of MG, probably through regulating ECM remodeling, which protected photoreceptors and improved visual function of rd10 mice. It might be a potential protocol to reprogram MG and delay mammal retinal degeneration.


Assuntos
Microglia , Degeneração Retiniana , Animais , Camundongos , Peixe-Zebra , Gliose , Neuroglia , Mamíferos
18.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497280

RESUMO

(1) Background: malignant peripheral nerve sheath tumours (MPNSTs) are aggressive Schwann cell-derived sarcomas with dismal prognoses. Previous studies have shown that nuclear receptor corepressor 2 (NCOR2) plays a vital role in neurodevelopment and in various tumours. However, the impact of NCOR2 on the progression of MPNST remains unclear. (2) Methods: by GEO database, MPNST tissue microarray, and NF1-related tumour tissues and cell lines were used to explore NCOR2 expression level in the MPNSTs. The role and mechanism of NCOR2 in NF1-derived MPNSTs were explored by experiments in vivo and in vitro and by transcriptome high-throughput sequencing. (3) Results: NCOR2 expression is significantly elevated in NF1-derived MPNSTs and is associated with patient 10-year survival time. Knockdown of NCOR2 suppressed NF1-derived MPNST cell proliferation by blocking the cell cycle in the G0/G1 phase. Moreover, decreased NCOR2 expression could down-regulate MAPK signal activity through the BDNF/TrkB pathway. (4) Conclusions: our findings demonstrated that NCOR2 expression is significantly elevated in NF1-derived MPNSTs. NCOR2 knockdown can inhibit NF1-derived MPNST cell proliferation by weakened BDNF/TrkB/ERK signalling. Targeting NF1-derived MPNSTs with TrkB inhibitors, or in combination with ERK inhibitors, may be a novel therapeutic strategy for clinical trials.

19.
Cell Oncol (Dordr) ; 45(6): 1137-1153, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327093

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors. CONCLUSION: In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.


Assuntos
Neoplasias de Bainha Neural , Neoplasias do Sistema Nervoso , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromina 1/genética , Neoplasias de Bainha Neural/genética , Mutação/genética
20.
Infect Dis Ther ; 11(6): 2241-2251, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310337

RESUMO

INTRODUCTION: The efficacy of molnupiravir (MLN) on Omicron sublineages is limited. We investigated the effectiveness of MLN in older adults diagnosed with Omicron BA.2. METHODS: Data of elderly COVID-19 patients (over 60 years) admitted to Chinghai Hospital (Shanghai, China) from 26 March to 31 May 2022 were reviewed. Study outcomes were a composite of undetectable viral load (VL) and disease progression [all-cause mortality, initiation of oxygen supply through high-flow device or invasive mechanical ventilation (IMV), or intensive care unit (ICU) admission] and their individual outcomes. RESULTS: A total of 42 elderly patients were enrolled: 26 of them received MLN, 17 (40.5%) were males, the median age was 84 years, and 12 were fully vaccinated (31.0%). Among these elderly COVID-19 patients, five (11.90%) experienced obvious dyspnea or were transferred to ICU [three MLN users (11.5%) versus two non-MLN users (12.5%)]. Compared with no MLN use, MLN use was associated with rapid undetectable VL. At day 10, MLN users achieved significantly greater undetectable VL than non-MLN users. Adjusted analysis showed that elderly patients who received MLN were 7.584 times more likely to achieve undetectable VL at day 10 than non-MLN users. Overall, elderly patients experienced a median hospital stay of 13 days. Compared with patients receiving standard care (SC), the median hospital stay of MLN users was reduced by 2.5 days. CONCLUSION: Early initiation of MLN in elderly COVID-19 was associated with fast undetectable VL and short hospital stay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...